
July 12, 2016

Gaithersburg, MD

NIST Workshop on Software Measures and Metrics to Reduce Security Vulnerabilities

Measuring Software Analyzability
Andrew Walenstein

Center for High Assurance Computer Excellence

The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the

official policy or position of BlackBerry.

1

Because

We need to measure the security of software better.

POSITION

We need to better measure the
analyzability of software

2
2

Motivation at BlackBerry

 Center for High Assurance Computing Excellence

• Security assurance research (collaborative)

• Have been exploring CBMC (with Oxford University)

• CBMC = bounded model checker

• Turns checks into Boolean satisfiability problem

Read code  generate SAT formula  search for solution

 Can be applied to find vulns due to integer overflow

3
3

Model checking for integer overflows

char* stagefrt(char* buffer, unsigned int count, unsigned int size)
{

unsigned int i;

unsigned int alloc_size = size * count;

char* copy = malloc(alloc_size);

for(i=0 ; i<count ; ++i)

strncpy(copy + i*size, buffer + i*size, size);

return copy;

}

4
4

Checkable – analyzable

void calls() {

char buffer[1024];

unsigned int over = UINT_MAX/2 + 1;

stagefrt(buffer, 2, 2);

stagefrt(buffer, 2, over);

}

Verifies successfully using model checker

Finds overflow

5
5

Still analyzable

main.c

#include “incl.h“

lc*ll(lc*lf,ld la lg,ld la le

){ld la lb;ld la
lj=le*lg;lc*lh=lm(lj);lu(lb=0;l
b<lg;++lb)lk(lh+lb*le

,lf+lb*le,le);lq lh;}la lo(){lc
lf[1024];ll(lf,2,lp/2+1);}

incl.h
#define lt void

#define lk strncpy

#define li const

#define lc char

#define ld unsigned

#define la int

#define ll stagefrt

#define lm malloc

#define lu for

#define lq return

#define lo main

#define lp UINT_MAX

6
6

void stagefrt2(char* buffer, unsigned int count, unsigned int size) {

unsigned int i;

unsigned int alloc_size;

if (count < size && (size > 12 || count < 32)) {

if (size > 32) {

if (count < 3)

alloc_size = count * size; }

else {

alloc_size = size;

count = 1; }}

else if (size > 1024 || (count < 42 && size > 2)) {

alloc_size = size;

count = 1; }

else {

alloc_size = size;

count = 1; }

char* copy = malloc(alloc_size);

for (i=0 ; i<count ; ++i)

strncpy(copy + i*size, buffer + i*size, size);

}

7
7

Actual problems for BMC

void calls() {

extern unsigned int unstated;

char buffer[1024];

unsigned int over = UINT_MAX/2 + 1;

stagefrt(buffer, 2, unstated);

stagefrt(buffer, 2, encrypt(msg,pw)==res ? 2 : over);

}

FP?

Hard…

8
8

Measures/metrics approach

Theory / approach

 Measuring drives improvement and investment – objective function

 What kind of improvement do we expect?

“We can’t hope to raise the cybersecurity

bar if we don’t know how to measure its

height”
David Kleidermacher, CSO BlackBerry

9
9

Goals: height of the bar

Economically

 “sustainably secure systems development and operation” – economic

viability question, not feasibility

Fantastically

 “reduce the number of vulnerabilities in software by orders of magnitude”

Urgently:

 A 3-7 year goal

10
10

Goals → Automation

Automation is the key

 We want sustainability

• How can costly humans be the answer?

 We seek orders of magnitude improvement

• How can we do this without mobilizing orders of magnitude better

automation?

Security assurance automation

 Assurance = level of confidence that software functions as intended and is

free from vulnerabilities (Mitre)

 Focus: checking security properties – the root of all confidence

11
11

Tool limitations

On formal methods:

“the applicability of these
techniques is currently
limited to modest programs
with tens-of-thousands of
lines of code. Improvements
in efficacy and efficiency may
make it possible to apply
formal methods to systems
of practical complexity”

2016 Federal Cybersecurity R&D Strategic Plan

On static analysis coverage:

“Static tools only see code they can follow,
which is why modern frameworks are so
difficult for them. Libraries and third-party
components are too big to analyze
statically, which results in numerous `lost
sources’ and `lost sinks’ – toolspeak for “we
have no idea what happened inside this
library.” Static tools also silently quit
analyzing when things get too complicated.”

Jeff Williams: Why It’s Insane to Trust Static Analysis

https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/2016_Federal_Cybersecurity_Research_and_Development_Stratgeic_Plan.pdf
http://www.darkreading.com/vulnerabilities---threats/why-its-insane-to-trust-static-analysis/a/d-id/1322274

12
12

Analysis gap

 Gap between what we can

automatically check and what

we need to

 We need to reduce that gap

 Common focus: height of

green -- need better checking

tools

 But what about asking if we

can make software more

analyzable?

Security Check
Analysis Difficulty

Commercially
relevant
systems we
care about

Effective
security

assurance
automation

Analysis Gap

13
13

Making software analyzable

Example Rule

Restrict all code to
very simple control
flow constructs – do

not use goto

statements, … and

direct or indirect

recursion.

Rationale

Simpler control flow translates into stronger
capabilities for verification…Without recursion, …,

we are guaranteed to have an acyclic function call

graph, which can be exploited by code analyzers,

and can directly help to prove that all executions

that should be bounded are in fact bounded.

Gerard J. Holtzman – NASA/JPL – The Power of 10: Rules for Developing Safety Critical Code

Gerard Holzman proposed 10 coding guidelines for safety critical code.

When it really counts, …, it may be worth going the extra mile and living

within stricter limits.. In return, we should be able to demonstrate more

convincingly that critical software will work as intended

http://spinroot.com/gerard/pdf/P10.pdf

14
14

Approach 1: heuristic metrics

Recipe

1. Identify properties of code that make it hard to analyze by “typical”

analyzers

2. Define metrics that relate to those code properties

Example

 Holzmann: do not use goto statements, …., and direct or indirect recursion

 Measure: based on observing gotos, direct and indirect recursion

Tradeoffs

 Easy to generate; might be pretty tool-independent

 No theory to guide and assess – we don’t want under- or over-restrictive

15
15

Approach 2: empirically measure

Recipe

1. For a given tool, identify ways in which analysis is weakened by code

2. Modify analysis tools to provide measures of analyzability

Example

 Tool can find data exfiltration tracking taint through some pointers, but not

all

 Modify tool to output measures relating to its success in following the taint

Tradeoffs

 Should be possible for many (all?) tools

 How usable / actionable are the reports?

16
16

Approach 3: new software metrics?

 Problem: code not modularized well for the purposes of checking using

CBMC

• Difficult to set up a small checking “environment” or calling context

• End up writing complex “drivers” and “stubs” and even modify the code

• Notorious problem in model checking community

 Essentially a modularity problem – the wrong modularity?

• The code might be considered nicely modular in terms of “ordinary”

modularity metrics

• But from the point of analyzing the code with CBMC, it was a tangled mess

• Is it possible to define new modularity metrics that ease CBMC-analyzabilty?

 Not yet sure – ongoing research

17
17

Approach 4: adapt obfuscation theory?

Theory

 Obfuscation = transformations that make analyzers break

 Making software more analyzable = deobfuscation

 Approach: define metrics using available theories of obfuscation potency

Example

 Giacobazzi and Dalla Preda use Abstract Interpretation to define

obfuscation in terms of transformations that make analyzers incomplete

• Yields a theoretical model for defining potency and comparing potency

• Can we use this approach to define metrics on code?

18
18

Analysis gap and the future

 What does the future hold

for automation of security

analysis?

 Where should we place our

bets for making orders of
magnitude improvement?

Imaging charting the green
and blue peaks into the
future….

Security Check Analysis Difficulty

Commercially
relevant
systems we care
about

Effective
security

assurance
automation

Analysis Gap

Time2016 2023

19
19

Automation revolution (closed universe)

 Fantastic improvement in

automated security assurance
(Henry Gordon Rice is astounded)

 Catch up to and surpass

current needs

 Effective elimination of classes

of vulnerabilities

20
20

Regression (open universe)

 Analysis loses ground

 Not promising for the

future

21
21

Stasis (flat universe)

 Analyzability of software rises at

same rate as our tool abilities

 Huge improvement possible for

some systems

 But gap is same = same lack of

assurance…have we succeeded

on our goals?

22
22

Rendezvous model

 Automation improves slowly

 Analyzability is measured and

slowly improves analyzability of

code

23
23

Bets?

Sustainable orders of magnitude increase in security in 5-7 years

 Where is your bet how it will most likely come to pass?

A. Non-automation

• Humans, processes, standards, …

B. Improvements in automation

• Improved & cheaper formal methods, program analysis, test generation…

C. Improvements in software analyzability

• Processes and tools that generate more analyzable code

24
24

Possible steps forward?

1. Defining new measures, metrics

• We can start defining as best we can and measure their utility.

2. Modifying tools to support analyzability improvements

• Reporting loss of completeness/precision – and highlight problem code

features?

• Automated de-obfuscators?

3. Language / framework design

• Can we make analyzability a key design feature?

4. Process change

• Analyzability as a quality?

• Analyzability gap as a type of maintenance debt?

